BATCH LEAST SQUARES DIFFERENTIAL CORRECTION OF A HELIOCENTRIC ORBIT

PART 2 - MANUAL CORRECTION WORKSHEET
Roger L. Mansfield, June 21, 2016
http://astroger.com
In this worksheet we differentially correct (DC) the orbit of a comet, minor planet, or interplanetary space probe using a test case specified in worksheet HD1, or in a worksheet derived from HD1. You should open worksheet HD1, or your own worksheet derived from HD1, and click on "Calculate Worksheet" from the Math menu now, if you have not already done so.
The process that we will use in this worksheet is documented in Refs. [1], [2], and [9] for the differential correction of Earth orbits. We will use only optical (astrometric) observations in this worksheet. The batch equation of differential correction (BEDC) is:

$$
X_{o}{ }^{\prime}=X_{o}+\left(A^{\top} W A\right)^{-1} A^{\top} W\left[Y-F\left(X_{0}\right)\right]
$$

Here X_{0} is the initial estimate of the state vector, i.e., position and velocity, at epoch $t_{0} . X_{0}{ }^{\prime}$ is the "improved" estimate of X_{0} at t_{0}, obtained by adding to X_{o} the correction ($\left.A^{\top} W A\right)^{-1} A^{\top} W\left[Y-F\left(X_{0}\right)\right]$

If we let n be the number of observations, then Y is a $2 n$-by- 1 column vector of measurements, since for our problem in heliocentric motion the measurements are topocentric right ascension (RA, or α) and topocentric declination (DEC or δ). If we denote the total number of measurements by N , then N $=2 \mathrm{n}$.
$F\left(X_{\mathrm{o}}\right)$ is thus an N -by-1column vector of "computed" measurements. What this means is that the RA and DEC for each observation are computed via our UPM model of two-body motion, by propagating the current estimate, X_{0}, to the observation times t_{i} for $\mathrm{i}=1, \ldots, n$, and by then computing the topocentric RA and DEC at each observation time, given the specified location of the observer. We say "current estimate, X_{o} " because we will find it necessary to iterate on the BEDC, testing for convergence at each iteration by means of a criterion we will define below. If we have convergence on a given iteration, then we stop and convert the solution to conic elements. But if we do not have convergence, then we replace X_{0} by $X_{o}{ }^{\prime}$ and solve the BEDC again, i.e., iterate. (We could also implement an iteration counter and stop the DC if some maximum allowable number of iterations is reached without convergence, but that is not needed here because we iterate the BEDC manually by clicking on "Calculate Worksheet".)
[$\mathrm{Y}-\mathrm{F}\left(\mathrm{X}_{0}\right)$] is the N -by-1column vector of residuals, in the sense "observed minus computed". The BEDC is a form of the least squares normal equations, N equations in six unknowns, which result when one answers the question, "what is a necessary condition that the weighted sum of squares of the residuals be a minimum?" The residuals are not actually $\Delta \alpha$ and $\Delta \delta$, but rather $\cos \delta \Delta \alpha$ and $\Delta \delta$ they are the projections of $\Delta \mathbf{L}$ on \mathbf{A} and \mathbf{D} in turn. (The cos δ factor can become quite important when the object passes near a celestial pole, where large changes in α accompany relatively small changes in arc length in the direction of motion.)

TIPS ON READING MATHCAD WORKSHEETS

worksheet typically consists of text regions and math regions.
2. Text and math regions can be anywhere on a page. Text regions are just optional comments. Mathcad uses math regions to do its calculations, and according to the following rule: math regions are calculated in the order of left to right, then top to bottom.
3. In a math region, colon-equals ($:=$) is like an assignment statement in C . That is, the expression on the right is calculated and placed in the variable on the left, whereas equals $(=)$ by itself is used to display on the right of the equals sign the value of the variable on the left.
4. Mathcad has functions just like C does. Typically a function has its name and input variables inside of parentheses on the left of a colon-equals ($:=$) and a sequence of vertical line segments with function the assignment statements use left arrows <-- instead of colon-quals := to make assignments. The last line of a function is ts output argument, which may be a scalar, a vector, or a hich may be a a scalar, a vector, or a matrix of variables.
5. My Mathcad worksheets generally are formatted so that the flow is left to right, top to bottom of an $8.5^{\prime \prime} \times 11^{\prime \prime}$ page when the workshet is printed

- But I like to use a second $8.5^{\prime \prime}$ page side-by-side for additional material, added later, that I might later delete, e.g., scratchpad or temporary calculations
- Sometimes I use this extra right-margin space to do, in parallel, calculations needed later on, or to simply add material without disturbing the main flow.

When my worksheet has the second, side-by-side page and I wan to publish the worksheet, I print the worksheet as an Adobe .pdf file. I specify the "ledger" format, which, thankfully, prints out both pages side-by-side.
These tips themselves fit my second, side-by-side page convention hey are additionaly material that is not part of the main flow of the worksheet.

A, the "A-matrix", is the N-by- 6 array of partial derivatives of the N measurements with respect to the six components of the state vector X_{o}. We will compute the A -matrix from the O -matrix and the G-matrix, i.e., $A=O G$. O is the N-by- 6 matrix of partials of the measurements with respect to the state vector at observation times t_{i}, for $i=1, \ldots, n$. G is Goodyear's 6 -by- 6 state transition matrix,
i.e., the 6 -by- 6 matrix of partials of the state components at times t_{i} with respect to the state
components at $t_{\text {. }}$. G is therefore a 6-by- 6 Jacobian matrix defined at each observation time t_{i}, for $i=$ $1, \ldots, n$.
W is the weight matrix. Under the assumption that the measurements are Gaussian random variables, and are not correlated (Danby [3] has a good discussion of this), W is a diagonal matrix and each diagonal entry is $1 / \sigma_{i}{ }^{2}$, where $\sigma_{i}{ }^{2}$ is the variance of measurment i. (We implement W here only for completeness; we will take W as the N -by-N identity matrix in this worksheet.)

Here now is an outline of the steps we will follow:

1. Retrieve the test case values from disk, as specified by worksheet HD1, or as specified by

 your own worksheet that was derived from HD1 by duplication and modification.Retrieval includes obtaining the initial or current estimate of state, X , and the RMS history matrix. Each time you click on "Calculate Worksheet", HDC performs another iteration of weighted, batch least squares differential correction. At each iteration the corrected values of X are written to disk along with the RMS for that iteration. The corrected values of X thus becom he current state estimate for the next iteration, and the RMS history is accumulated so that you can keep track of how the DC is going
2. Define the procedural functions needed in the DC: C, FG, GMAT, and FXA.
3. Obtain the computed measurements, FX, and the A-matrix, A, by invoking FXA.
4. Compute the residuals, ΔY, the $A^{\top} W A$ matrix ATWA, and the $A^{\top} W \Delta Y$ matrix, $A T W \Delta Y$.
5. Solve for and apply the corrections to state, ΔX. Compute the current RMS, display the RMS history and test for convergence.
6. Write the corrected state vector to disk and convert to conic elements
7. Repeat Steps 1-6, by clicking on "Calculate Worksheet", until convergence is obtained

As a preliminary, we define some constants that we will need, and set the Mathcad worksheet ORIGIN to 1 so that subscripts start at unity rather than at zero.

$$
\text { DegPerRad }:=\frac{180}{\pi}
$$

ORIGIN $\equiv 1$

$$
\text { SecPerDeg }:=3600.0 \quad \text { SecPerRad }:=206264.806
$$

SecPerRev := SecPerDeg•360.0

1. Retrieve the test case values from disk, as specified by worksheet HD1, or as specified by your own worksheet that was derived from HD1 by duplication and modification.

$\mathrm{n}:=$ READPRN("NOBS.dat") ${ }_{1}$	Number of observations.
JDT : = READPRN("TVALS.prn")	Observation times.
Epoch := READPRN("EPOCH.dat") 1_{1}	Epoch of state vector solution.
$\underset{\sim}{W}=$ = READPRN("WEIGHTS.prn")	Measurement weights matrix.
R:= READPRN("RVALS.prn")	Values of \mathbf{R}.
Y:= READPRN("YVALS.prn")	Values of Y .
X := READPRN("STATE.prn")	State vector (corrected by HDC).
RMS := READPRN("RMS.prn")	RMS history for state corrections by HDC (one entry for each iteration).
$\Delta:=$ READPRN("DELTA.prn")	Δ values for light-time correction.
$N:=2 \cdot n$	Set number of measurements.
$\mathrm{k}:=0.01720209895$	Set Gaussian constant for heliocentric motion
$\mu:=1$	Assume that mass of secondary (comet or asteroid) is negligible relative to mass of primary (Sun).
$\underset{\mathrm{W}}{\mathrm{~K}}:=\mathrm{k} \cdot \sqrt{\mu}$	

2. Define the procedural functions needed in the DC. C, FG, GMAT and FXA

For path propagation one needs to calculate only c_{0} through c_{3}, but for the state transition matrix, G one needs c_{0} through c_{5}. To keep down the length of this worksheet we define one version of \mathbf{C}, the one that calculates c_{0} through c_{5}. (Remember that since the $\operatorname{ORIGIN}=1$, the subscripts of the c-functions that we will use outside of the function \mathbf{C} will range from 1 through 6 , rather than from 0 through 5.)

The material added below works in parallel with the main worksheet
flow on the left to calculate and display a comparison plot of the
ephemeris of Ceres at 30 -day intervals starting at the JDT ${ }_{1}$ epoch
What is compared is the ephemeris of Ceres obtained from the DC solution with 17 actual Piazzi observations vs. the DC solution with 19 Der ORBIT2-computed observations. There are 13 ephemeris comparison points that span 360 days past epoch

Read values and points needed for comparison plot, HDC with 17 actual Piazzi obs vs. HDC with 19 Der ORBIT2-computed obs:

R1 := READPRN("RVALS1.prn")

M2 := READPRN("POINTS DER.prn")

Note on READPRN for M2:

POINTS DER.prn has RA/DEC predictions from HduHdc solution with 17 Piazzi observations. The predictions are at epoch plus 12 additional points spaced at equal 30 -day intervals past epoch.

POINTS_DER_ORBIT2.prn has RA/DEC predictions using ORBIT2 solar system numerical integration. Here, too, the predictions are at epoch plus 12 additional points spaced at equal 30 -day intervals past epoch.

Input Gauss's search ephemeris as provided to von Zach. See Monatliche Correspondenz, Vol. 4, p. 647 (1801 December).

Gauss := READPRN("GAUSS.prn")

$$
\begin{aligned}
& \mathbf{C}(\mathrm{x}):=\mid \mathrm{N} \leftarrow 0 \\
& \text { while }|x| \geq 0.1 \\
& \left\lvert\, \mathrm{x} \leftarrow \frac{\mathrm{x}}{4}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{c}_{4} \leftarrow \frac{\left[1-\frac{\mathrm{x}}{30}\left[1-\frac{x}{56}\left[1-\frac{\mathrm{x}}{090}\left[1-\frac{x}{132}\left[1-\frac{\mathrm{x}}{182}\left(1-\frac{\mathrm{x}}{240}\right)\right] d\right]\right.\right.\right.}{24} \\
\mathrm{c}_{3} \leftarrow \frac{1}{6}-\mathrm{c}_{5} \cdot \mathrm{x}
\end{array} \\
& \mathrm{c}_{3} \leftarrow \frac{-}{6}-\mathrm{c}_{5} \\
& \mathrm{c}_{2} \leftarrow \frac{1}{2}-\mathrm{c}_{4} \cdot \mathrm{x} \\
& \mathrm{c}_{1} \leftarrow 1-\mathrm{c}_{3} \cdot \mathrm{x} \\
& \mathrm{c}_{0} \leftarrow 1-\mathrm{c}_{2} \cdot \mathrm{x} \\
& \text { while } \mathrm{N}>0 \\
& \mathrm{~N} \leftarrow \mathrm{~N}-1 \\
& \left\{\begin{array}{l}
\mathrm{c}_{5} \leftarrow \frac{\left(\mathrm{c}_{2} \cdot \mathrm{c}_{3}+\mathrm{c}_{4}+\mathrm{c}_{5}\right)}{16} \\
\mathrm{c}_{4} \leftarrow \frac{\left(\mathrm{c}_{2} \cdot \mathrm{c}_{2}+\mathrm{c}_{4}+\mathrm{c}_{4}\right)}{8} \\
\mathrm{c}_{3} \leftarrow \frac{\left(\mathrm{c}_{1} \cdot \mathrm{c}_{2}+\mathrm{c}_{3}\right)}{4} \\
\mathrm{c}_{2} \leftarrow \frac{\mathrm{c}_{1} \cdot \mathrm{c}_{1}}{2} \\
\mathrm{c}_{1} \leftarrow \mathrm{c}_{1} \cdot \mathrm{c}_{0} \\
\mathrm{c}_{0} \leftarrow 2 \cdot \mathrm{c}_{0} \cdot \mathrm{c}_{0}-1
\end{array}\right. \\
& \left(\begin{array}{llllll}
c_{0} & c_{1} & c_{2} & c_{3} & c_{4} & c_{5}
\end{array}\right)^{\mathrm{T}}
\end{aligned}
$$

$\mathbf{F G}\left(\mathrm{K}, \mathbf{r}_{\mathbf{0}}, \mathbf{v}_{\mathbf{0}}, \Delta \mathrm{t}\right):=\left\lvert\, \begin{aligned} & \tau \leftarrow \mathrm{K} \cdot \Delta \mathrm{t} \\ & \mathrm{r}_{\mathbf{0}} \leftarrow \sqrt{\mathbf{r}_{\mathbf{0}} \cdot \mathbf{r}_{\mathbf{r}}}\end{aligned}\right.$

$$
\left\{\begin{array}{l}
\mathrm{r}_{\mathrm{o}} \leftarrow \sqrt{\mathbf{r}_{0} \cdot \mathbf{r}_{\mathbf{o}}} \\
\sigma_{\mathrm{o}} \leftarrow \mathbf{r}_{0} \cdot \mathbf{v}_{0}
\end{array}\right.
$$

$$
\alpha \leftarrow \frac{2}{\mathrm{r}_{0}}-\mathbf{v}_{\mathbf{0}} \cdot \mathrm{v}_{\mathbf{0}}
$$

$$
\mathrm{s} \leftarrow \operatorname{UKEP}\left(\tau, \mathrm{r}_{0}, \sigma_{0}, \alpha\right)
$$

$$
\mathbf{c} \leftarrow \mathbf{C}\left(\alpha \cdot s^{2}\right)
$$

$$
\mathrm{f}_{\mathrm{r}} \leftarrow 1-\mathrm{s}^{2} \cdot \mathbf{c}_{3} \cdot \mathrm{r}_{\mathrm{o}}-1
$$

$$
\mathrm{g}_{\mathrm{r}} \leftarrow \tau-\mathrm{s}^{3} \cdot \mathbf{c}_{4}
$$

$$
\mathrm{r} \leftarrow \mathrm{r}_{0} \cdot \mathbf{c}_{1}+\sigma_{\mathrm{o}} \cdot \mathrm{~s} \cdot \mathbf{c}_{2}+\mathrm{s}^{2} \cdot \mathbf{c}_{3}
$$

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{v}} \leftarrow-\mathrm{s} \cdot \mathbf{c}_{2} \cdot\left(\mathrm{r} \cdot \mathrm{r}_{\mathrm{o}}\right)^{-1} \\
& \mathrm{~g}_{\mathrm{v}} \leftarrow 1-\mathrm{s}^{2} \cdot \mathbf{c}_{3} \cdot \mathrm{r}^{-1} \\
& \left(\mathrm{~K} \alpha \mathrm{r}_{\mathrm{o}} \mathrm{f}_{\mathrm{r}} \mathrm{f}_{\mathrm{v}}\right)
\end{aligned}
$$

$$
\left(\begin{array}{ccccc}
\mathrm{K} & \alpha & \mathrm{r}_{\mathrm{o}} & \mathrm{f}_{\mathrm{r}} \\
\tau & \mathrm{~s} & \mathrm{r} & \mathrm{~g}_{\mathrm{r}} & \mathrm{~g}_{\mathrm{v}}
\end{array}\right)
$$

Function GMAT provides the state transition matrix for function FXA

The state transition matrix formulation that we use below is based upon the seminal works of Goodyear [4], [5]. See also Shepperd [6], Battin [7], and Der [8] for more recent expositions.

Before defining GMAT, we define functions $\mathbf{S}_{11}, \mathbf{S}_{12}, \mathbf{S}_{21}$, and \mathbf{S}_{22} just to make GMAT fit horizontally and vertically within the margins of a single Mathcad page.

$$
\begin{aligned}
& \mathbf{S}_{11}\left(\mathrm{r}_{\mathrm{o}}, r, \mathrm{f}_{\mathrm{r}}, \mathrm{~g}_{\mathrm{r}}, \mathrm{f}_{\mathrm{v}}, \mathrm{~g}_{\mathrm{v}}, \mathbf{s}\right):=\left[\begin{array}{cc}
-\frac{f_{\cdot} \cdot \mathbf{s}_{2}+\frac{f_{r}-1}{r_{o}}}{\mathrm{r}_{\mathrm{o}}} & -\mathrm{f}_{\mathrm{v}} \cdot \mathbf{s}_{3} \\
\frac{\left(\mathrm{f}_{\mathrm{r}}-1\right) \cdot \mathbf{s}_{2}}{\mathrm{r}_{\mathrm{o}}} & \left(\mathrm{f}_{\mathrm{r}}-1\right) \cdot \mathbf{s}_{3}
\end{array}\right] \\
& \mathbf{s}_{12}\left(\mathrm{r}_{0}, \mathrm{r}, \mathrm{f}_{\mathrm{r}}, \mathrm{~g}_{\mathrm{r}}, \mathrm{f}_{\mathrm{v}}, \mathrm{~g}_{\mathrm{v}}, \mathbf{s}\right):=\left[\begin{array}{cc}
-\mathrm{f}_{\mathrm{v}} \cdot \mathbf{s}_{3} & -\left(\mathrm{g}_{\mathrm{v}}-1\right) \cdot \mathbf{s}_{3} \\
\left(\mathrm{f}_{\mathrm{r}}-1\right) \cdot \mathbf{s}_{3} & \mathrm{~g}_{\mathrm{r}} \cdot \mathbf{s}_{3}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{S}_{22}\left(\mathrm{r}_{0}, r, \mathrm{f}_{\mathrm{r}}, \mathrm{~g}_{\mathrm{r}}, \mathrm{f}_{\mathrm{v}}, \mathrm{~g}_{\mathrm{v}}, \mathbf{s}\right):=\left[\begin{array}{cc}
-\frac{\mathrm{f}_{\mathrm{v}} \cdot \mathbf{s}_{2}+\frac{\mathrm{g}_{\mathrm{v}}-1}{\mathrm{r}}}{\mathrm{r}} & \frac{-\left(\mathrm{g}_{\mathrm{v}}-1\right) \cdot \mathbf{s}_{2}}{\mathrm{r}} \\
\mathrm{f}_{\mathrm{v}} \cdot \mathbf{s}_{3} & \left(\mathrm{~g}_{\mathrm{v}}-1\right) \cdot \mathbf{s}_{3}
\end{array}\right]
\end{aligned}
$$

(Note that because ORIGIN = 1, the subscripts of the c-functions and Goodyear's s-functions range from 1 to 6 rather than from 0 to 5 . It is especially important to note this difference when checking the GMAT formulas against Goodyear's original works.)

$$
\begin{aligned}
& \boldsymbol{\operatorname { G M A T }}\left(\mathbf{M}, \mathbf{r}_{\mathbf{o}}, \mathbf{v}_{\mathbf{0}}, \mathbf{r}, \mathbf{v}\right):=\mid \tau \leftarrow \mathbf{M}_{2,1} \\
& \begin{array}{l}
\alpha \leftarrow \mathbf{M}_{1,2} \\
s \leftarrow \mathbf{M}_{2,2}
\end{array} \\
& \mathbf{r}_{0} \leftarrow \mathbf{M}_{1,3} \\
& \mathrm{r} \leftarrow \mathbf{M}_{2,3} \\
& \mathrm{f}_{\mathrm{r}} \leftarrow \mathbf{M}_{1,4} \\
& \begin{array}{l}
\mathrm{g}_{\mathrm{r}} \leftarrow \mathbf{M}_{2,4} \\
\mathrm{f} \leftarrow \mathbf{M}_{1,5}
\end{array} \\
& \begin{array}{l}
\mathrm{f}_{\mathrm{v}} \leftarrow \mathbf{M}_{1,5} \\
\mathrm{~g}_{\mathrm{v}} \leftarrow \mathbf{M}_{2,5}
\end{array} \\
& \mathbf{c} \leftarrow \mathbf{C}\left(\alpha \cdot s^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{U} \leftarrow \mathrm{~s}_{3} \cdot \tau+\mathrm{s} \cdot \mathbf{s}_{5}-3 \cdot \mathrm{~s}_{6} \\
& \mathrm{~A} \leftarrow \operatorname{augment}(\mathbf{r}, \mathbf{v}) \\
& \mathrm{B} \leftarrow \operatorname{augment}\left(\mathbf{r}_{0}, \mathbf{v}_{0}\right)^{\mathrm{T}} \\
& \mathrm{a}_{0} \leftarrow \frac{-\mathrm{r}_{0}}{\mathrm{r}_{0}{ }^{3}} \\
& \mathrm{a} \leftarrow \frac{-\mathrm{r}}{3} \\
& 1 \leftarrow \text { identity (3) } \\
& \mathrm{G}_{11} \leftarrow \mathrm{f}_{\mathrm{r}} \mathbf{I}+\mathrm{U} \cdot \mathbf{v} \cdot \mathbf{a}_{0}{ }^{T}+\mathbf{A} \cdot \mathbf{S}_{11}\left(\mathrm{r}_{0}, \mathrm{r}, \mathrm{f}_{\mathrm{r}}, \mathrm{~g}_{\mathrm{g}}, \mathrm{f}_{v}, \mathrm{~g}_{v}, \mathrm{~s}\right) \cdot \mathbf{B} \\
& \mathbf{G}_{12} \leftarrow \mathrm{~g}_{\mathrm{r}} \mathbf{I}-\mathrm{U} \cdot \mathbf{v} \cdot \mathbf{v}_{0}^{T}+\mathbf{A} \cdot \mathbf{S}_{12}\left(\mathrm{r}_{0}, \mathrm{r}, \mathrm{f}_{\mathrm{r}}, \mathrm{~g}_{\mathrm{r}}, \mathrm{f}_{\mathrm{v}}, \mathrm{~g}_{\mathrm{v}}, \mathrm{~s}\right) \cdot \mathbf{B} \\
& \mathbf{G}_{21} \leftarrow \mathrm{f}_{\mathrm{v}} \cdot \mathbf{I}+\mathrm{U} \cdot \mathbf{a} \cdot \mathbf{a}_{0}{ }^{T}+\mathbf{A} \cdot \mathbf{S}_{21}\left(\mathrm{r}_{0}, \mathrm{r}, \mathrm{f}_{\mathrm{r}}, \mathrm{~g}_{r}, \mathrm{f}_{v}, \mathrm{~g}_{v}, \mathbf{s}\right) \cdot \mathbf{B} \\
& \mathrm{G}_{22} \leftarrow \mathrm{~g}_{\mathrm{v}} \cdot \mathbf{I}-\mathrm{U} \cdot \mathbf{a} \cdot \mathrm{v}_{\mathrm{o}}{ }^{\mathrm{T}}+\mathrm{A} \cdot \mathrm{~S}_{22}\left(\mathrm{r}_{\mathrm{o}}, \mathrm{r}, \mathrm{f}_{\mathrm{r}}, \mathrm{~g}_{\mathrm{r}}, \mathrm{f}_{\mathrm{v}}, \mathrm{~g}_{\mathrm{v}}, \mathrm{~s}\right) \cdot \mathrm{B} \\
& \operatorname{stack}\left(\operatorname{augment}\left(\mathbf{G}_{11}, \mathbf{G}_{12}\right), \operatorname{augment}\left(\mathbf{G}_{21}, \mathbf{G}_{22}\right)\right)
\end{aligned}
$$

Function FXA calculates $\mathbf{F X}$, the N -by-1 computed measurements vector, and A , the N -by-6 A-matrix of partials of the measurements at time t_{i} with respect to the state at time t_{0}

Below is an example of a "trick" in Mathcad. Since calculation flow is from left to right, top to bottom, by making a copy of FXA and pasting it to the right of the original, I can modify the copy and Mathcad will use the modified copy instead of the original.

Temporarily disable light-time displacement in FXA in order to compare solution with that of HGM using ORBIT2-derived TOD observations.

$$
\begin{aligned}
& \operatorname{FXA}\left(\mathrm{K}, \mathbf{r}_{\mathbf{0}}, \mathbf{v}_{\mathbf{o}}\right):=\quad \text { for } \mathrm{i} \in 1 \ldots \mathrm{n} \\
& \left\lvert\, \begin{array}{l}
\mathbf{M} \leftarrow \mathbf{F G}\left(\mathrm{K}, \mathbf{r}_{\mathbf{0}}, \mathbf{v}_{\mathbf{0}}, \mathbf{J D T}_{\mathrm{i}}-\text { Epoch }\right) \\
\tau \leftarrow \mathbf{M}_{2,}
\end{array}\right. \\
& \tau \leftarrow \mathbf{M}_{2,1} \\
& \alpha \leftarrow \mathbf{M}_{1,2} \\
& \begin{array}{r}
\mathbf{M}_{2,2} \\
\mathrm{r}_{\mathrm{o}} \leftarrow \mathbf{M}_{1,3}
\end{array} \\
& \mathrm{r} \leftarrow \mathbf{M}_{2,3} \\
& \mathrm{f}_{\mathrm{r}} \leftarrow \mathbf{M}_{1,4} \\
& \mathrm{~g}_{\mathrm{r}} \leftarrow \mathbf{M}_{2,4} \\
& \mathrm{f}_{\mathrm{v}} \leftarrow \mathbf{M}_{1,5} \\
& \mathrm{~g}_{\mathrm{v}} \leftarrow \mathbf{M}_{2,5} \\
& \mathbf{r} \leftarrow \mathrm{f}_{\mathrm{r}} \cdot \mathbf{r}_{\mathbf{o}}+\mathrm{g}_{\mathrm{r}} \cdot \mathbf{v}_{\mathbf{o}} \\
& \mathrm{v} \leftarrow \mathrm{f}_{\mathrm{v}} \cdot \mathbf{r}_{\mathbf{0}}+\mathrm{g}_{\mathrm{v}} \cdot \mathbf{v}_{\mathbf{0}} \\
& \rho \leftarrow \mathbf{r}+\mathbf{R}^{\langle\langle \rangle} \\
& \rho \leftarrow \sqrt{\boldsymbol{\rho} \cdot \boldsymbol{\rho}} \\
& j \leftarrow 2 \cdot i-1 \\
& k \leftarrow j+1 \\
& \text { RA } \leftarrow \operatorname{angle}\left(\boldsymbol{\rho}_{1}, \boldsymbol{\rho}_{2}\right) \\
& \operatorname{DEC} \leftarrow \operatorname{asin}\left(\rho_{3} \cdot \rho^{-1}\right) \\
& \mathbf{F X}_{\mathrm{j}} \leftarrow \cos \left(\mathrm{Y}_{\mathrm{k}}\right) \cdot \mathrm{RA} \\
& \mathbf{F X}_{\mathrm{k}} \leftarrow \text { DEC } \\
& \Delta_{\mathrm{j}} \leftarrow \rho \\
& \Delta_{\mathrm{k}} \leftarrow 0 \\
& \mathrm{O} \leftarrow \frac{1}{\rho} .\left(\begin{array}{ccccc}
-\sin (\mathrm{RA}) & \cos (\mathrm{RA}) & 0 & 0 & 0
\end{array} 0\right. \\
& \left.\begin{array}{lllll}
\rho \\
(-\sin (\mathrm{DEC}) \cdot \cos (\mathrm{RA}) & -\sin (\mathrm{DEC}) \cdot \sin (\mathrm{RA}) & \cos (\mathrm{DEC}) & 0 & 0
\end{array}\right) \\
& \mathrm{G} \leftarrow \operatorname{GMAT}\left(\mathbf{M}, \mathbf{r}_{\mathbf{0}}, \mathbf{v}_{\mathbf{0}}, \mathbf{r}, \mathbf{v}\right) \\
& \mathrm{A} \leftarrow \mathrm{O} \cdot \mathrm{G} \text { if } \mathrm{i}=1 \\
& \mathrm{~A} \leftarrow \operatorname{stack}(\mathrm{~A}, \mathrm{O} \cdot \mathrm{G}) \quad \text { otherwise } \\
& \mathrm{A} \leftarrow \operatorname{augment}(\mathbf{F X}, \mathrm{~A}) \\
& \operatorname{augment}(\Delta, \mathrm{A})
\end{aligned}
$$

3. Obtain the computed measurements, FX, and the A-matrix, A, by invoking FXA
$\mathbf{r}_{\mathbf{0}}:=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$

$$
\mathbf{v}_{\mathbf{0}}:=\left(\begin{array}{l}
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right) \cdot \frac{1}{K}
$$

$\mathbf{M}:=\mathbf{F X A}\left(\mathrm{K}, \mathbf{r}_{\mathbf{0}}, \mathbf{v}_{\mathbf{0}}\right)$
$\mathbf{F X}:=\mathbf{M}^{\langle\nu\rangle}$
A: = submatrix $(\mathbf{M}, 1, \mathrm{~N}, 3,8)$

	1
1	0.87061649
2	0.27277156
3	0.86913415
4	0.27374488
5	0.86651011
6	0.27575906
7	0.86130628
8	0.28232962
9	0.86005835
10	0.28713294
11	0.86095872
12	0.29358074
13	0.86206144
14	0.29628839
15	0.86277151
16	

Extract the geocentric distance values as needed for the light-time correction.
$\Delta:=\mathbf{M}^{\langle 1\rangle}$

To see all entries of $\mathbf{F X}$ or A, click on the column vector or matrix, respectively, and scroll up/down or right/left.)

$\mathrm{A}=$| | 1 | 2 |
| ---: | ---: | ---: |
| 1 | -0.40491515 | 0.31866265 |
| 2 | -0.08584821 | -0.10908477 |
| 3 | -0.40257292 | 0.31766557 |
| 4 | -0.08587629 | -0.10883056 |
| 5 | -0.3979437 | 0.31547555 |
| 6 | -0.0858876 | -0.1083467 |
| 7 | -0.38459127 | \ldots |

Define function to calculate geocentric positions of Ceres at 30-day intervals starting at epoch. Need to input R1 array of heliocentric Earth positions, computed in HD1, in order for this to work. Also need M2 array from the HD1/HDC worksheet pair, with 19 Der ORBIT2-computed positions as needed for the comparison plot.
$\operatorname{Points}\left(\mathrm{K}, \mathbf{r}_{\mathbf{0}}, \mathbf{v}_{\mathbf{0}}\right):=\mid$ for $\mathrm{j} \in 1 . .13$

$$
\begin{aligned}
& \left\lvert\, \begin{array}{l}
\mathrm{t}_{\mathrm{j}} \leftarrow \mathbf{J D T} \mathbf{T}_{1}-\text { Epoch }+30 \cdot(\mathrm{j}-1) \\
\mathbf{M} \leftarrow \mathbf{F G}\left(\mathrm{K}, \mathbf{r}_{\mathbf{0}}, \mathbf{v}_{\mathbf{0}}, \mathrm{t}_{\mathrm{j}}\right)
\end{array}\right. \\
& \tau \leftarrow \mathbf{M}_{2,1} \\
& \alpha \leftarrow \mathbf{M}_{1,2} \\
& \mathrm{~s} \leftarrow \mathbf{M}_{2,2} \\
& \mathrm{r}_{\mathrm{o}} \leftarrow \mathbf{M}_{1,3} \\
& \mathrm{r} \leftarrow \mathbf{M}_{2,3} \\
& \mathrm{f}_{\mathrm{r}} \leftarrow \mathbf{M}_{1,4} \\
& \mathrm{~g}_{\mathrm{r}} \leftarrow \mathbf{M}_{2,4} \\
& \mathrm{f}_{\mathrm{v}} \leftarrow \mathbf{M}_{1,5} \\
& \mathrm{~g}_{\mathrm{v}} \leftarrow \mathbf{M}_{2,5} \\
& \mathbf{r} \leftarrow \mathrm{f}_{\mathrm{r}} \cdot \mathbf{r}_{\mathbf{0}}+\mathrm{g}_{\mathrm{r}} \cdot \mathbf{v}_{\mathbf{0}} \\
& \mathbf{v} \leftarrow \mathrm{f}_{\mathrm{v}} \cdot \mathbf{r}_{\mathbf{o}}+\mathrm{g}_{\mathrm{v}} \cdot \mathbf{v}_{\mathbf{o}} \\
& \rho \leftarrow \mathbf{r}+\mathbf{R} \mathbf{1}^{\langle\mathrm{j}\rangle} \\
& \rho \leftarrow \sqrt{\boldsymbol{\rho} \cdot \boldsymbol{\rho}} \\
& \text { RA } \leftarrow \operatorname{angle}\left(\boldsymbol{\rho}_{1}, \boldsymbol{\rho}_{2}\right) \cdot \text { DegPerRad } \\
& \text { DEC } \leftarrow \operatorname{asin}\left(\rho_{3} \cdot \rho^{-1}\right) \text {.DegPerRad } \\
& A \leftarrow\left(\mathrm{t}_{\mathrm{j}} \mathrm{t}_{\mathrm{j}}+\text { JDT }_{1} \frac{R A}{15} \text { DEC }\right) \text { if } \mathrm{j}=1 \\
& \mathrm{~A} \leftarrow \operatorname{stack}\left[A,\left(\mathrm{t}_{\mathrm{j}} \mathrm{t}_{\mathrm{j}}+\mathbf{J D T}_{1} \frac{R A}{15} \operatorname{DEC}\right)\right] \text { otherwise }
\end{aligned}
$$

M1 := Points $\left(\mathrm{K}, \mathbf{r}_{\mathbf{0}}, \mathbf{v}_{\mathbf{0}}\right)$
4. Compute the residuals, $\Delta \mathrm{Y}$, the A^{\top} WA matrix ATWA, and the $\mathrm{A}^{\top} W \Delta \mathrm{Y}$ matrix, $\mathrm{ATW}^{\mathrm{T}} \mathrm{Y}$

8	0.00001459
10	0.00000136
11	-0.00000565
12	0.00000352
13	-0.00000121
14	0.00000986
15	-0.0000196
16	\ldots

$$
\begin{aligned}
& \text { ATWA }:=\mathrm{A}^{\mathrm{T}} \cdot \mathrm{~W} \cdot \mathrm{~A} \\
& \text { ATW } \Delta \mathrm{Y}:=\mathrm{A}^{\mathrm{T}} \cdot \mathrm{~W} \cdot \Delta \mathrm{Y}
\end{aligned}
$$

(To see all entries of $\Delta \mathrm{Y}$, click
(To see all entries of ΔY, click scroll up/down or right/left.) scroll up/down or right/left.)

$$
\left(\begin{array}{cccccc}
2.351508 & -1.5972887 & -0.6199579 & 0.8197251 & -0.5420871 & -0.2174363 \\
-1.5972887 & 1.5580222 & -0.7910734 & -0.5460656 & 0.5332222 & -0.2825486 \\
-0.6199579 & -0.7910734 & 3.2855841 & -0.2189415 & -0.2823915 & 1.1231481 \\
0.8197251 & -0.5460656 & -0.2189415 & 0.4007607 & -0.2619893 & -0.1061408 \\
-0.5420871 & 0.5332222 & -0.2823915 & -0.2619893 & 0.2561328 & -0.1392604 \\
-0.2174363 & -0.2825486 & 1.1231481 & -0.1061408 & -0.1392604 & 0.5430261
\end{array}\right)
$$

$$
\mathrm{ATW} \Delta \mathrm{Y}=\left(\begin{array}{c}
0 \\
1.0733 \times 10^{-15} \\
-0 \\
-0 \\
-0 \\
0
\end{array}\right)
$$

M1 points represent HDC solution for 17 actual Piazzi obs. M2 points represent HDC solution for 19 Der ORBIT2-computed Piazzi obs:
$=\left(\begin{array}{cccc}0 & 2378862.3634 & 3.453183 & 15.628659 \\ 30 & 2378892.3634 & 3.505395 & 17.813179 \\ 60 & 2378922.3634 & 3.914105 & 20.634205 \\ 90 & 2378952.3634 & 4.571208 & 23.38934 \\ 120 & 2378982.3634 & 5.392999 & 25.475214 \\ 150 & 2379012.3634 & 6.318119 & 26.466655 \\ 180 & 2379042.3634 & 7.295335 & 26.147587 \\ 210 & 2379072.3634 & 8.280609 & 24.529099 \\ 240 & 2379102.3634 & 9.239695 & 21.839429 \\ 270 & 2379132.3634 & 10.148411 & 18.489777 \\ 300 & 2379162.3634 & 10.986372 & 15.041401 \\ 330 & 2379192.3634 & 11.724098 & 12.190926 \\ 360 & 2379222.3634 & 12.304506 & 10.752828\end{array}\right) \quad \mathbf{M} \mathbf{} \quad=\left(\begin{array}{cccccc}0 & 2378862.3634 & 3.39371 & 15.24174 & 3.39371 & 15.2413 \\ 30 & 2378892.3634 & 3.45324 & 17.43789 & 3.45324 & 17.43758 \\ 60 & 2378922.3634 & 3.86198 & 20.27967 & 3.86199 & 20.27941 \\ 90 & 2378952.3634 & 4.5134 & 23.06853 & 4.51346 & 23.06808 \\ 120 & 2378982.3634 & 5.32587 & 25.21261 & 5.32605 & 25.21175 \\ 150 & 2379012.3634 & 6.23988 & 26.29566 & 6.24026 & 26.29404 \\ 180 & 2379042.3634 & 7.20579 & 26.10347 & 7.20645 & 26.10046 \\ 210 & 2379072.3634 & 8.18052 & 24.64158 & 8.18154 & 24.63619 \\ 240 & 2379102.3634 & 9.12977 & 22.12891 & 9.13118 & 22.11999 \\ 270 & 2379132.3634 & 10.02824 & 18.96953 & 10.03011 & 18.95587 \\ 300 & 2379162.3634 & 10.85363 & 15.72572 & 10.85606 & 15.70595 \\ 330 & 2379192.3634 & 11.57367 & 13.10856 & 11.57685 & 13.08091 \\ 360 & 2379222.3634 & 12.1273 & 11.96112 & 12.13152 & 11.92318\end{array}\right)$

Sky plot of right ascension, in hours, vs. declination, in degrees, for
HD1/HDC solution with 17 Piazzi observations (red plusses) vs. HD1/HDC solution with 19 Der ORBIT2-computed Piazzi observations (blue plusses)

Note: Since right ascension increases from 0 to 24 hours west to east in the sky, and right to left on a sky chart, M1 and M2 were made negative and the horizontal axes go from 0 to -15 hours so that the path of Ceres is
correct when superimposed on a star chart.

6/21/2016

Plot the $\Delta \alpha \cos \delta$ (red trace in the plot) and $\Delta \delta$ residual (blue trace in the plot) for $\mathrm{n}=17$ observations. The units are arc-seconds for both traces
$\mathrm{j}:=1$.. n

Note: this plot, and indeed all of the calculations in the worksheet, are redone for every iteration of the DC, i.e., at every Ctrl-F9 or Tools Menu > Calculate > Calculate Worksheet click.

Right ascension differences,
in degrees:
$\left(\mathbf{M 1}^{\langle 3\rangle}-\mathbf{M 2}{ }^{\langle 3\rangle}\right) \cdot 15=\left(\begin{array}{l}0.89210113 \\ 0.78232816 \\ 0.78188813 \\ 0.86713482 \\ 1.00692924 \\ 1.17363085 \\ 1.34322703 \\ 1.50127529 \\ 1.64885196 \\ 1.80252724 \\ 1.99116541 \\ 2.25635735 \\ 2.65806368\end{array}\right) \quad \mathbf{M 1}^{\langle 3\rangle}-\mathbf{M 2}{ }^{\langle 3\rangle}=\left(\begin{array}{l}0.05947341 \\ 0.05215521 \\ 0.05212588 \\ 0.05780899 \\ 0.06712862 \\ 0.07824206 \\ 0.08954847 \\ 0.10008502 \\ 0.10992346 \\ 0.12016848 \\ 0.13274436 \\ 0.15042382 \\ 0.17720425\end{array}\right)$

Conclusion from these right-side-of-the-worksheet side calculations

The orbital solution in the worksheet

Hdc_Ceres_1801_Piazzi_17_obs_Theta=RA_plot.xmcd
differs from the orbital solution in the worksheet
Hdc_Ceres 1801_Der_19 obs_Theta=RA.xmcd
by about 2.66 degrees of right ascension after 360 days.
It is important to note that, as can be seen from the comparison plot above, both solutions follow the same "corridor" in the sky. They diffe mainly in predicting precisely where Ceres was along its path in this corridor.
5. Solve for and apply the corrections to state, $\Delta \mathrm{X}$. Compute the current RMS error, display the

RMS error history, and test for convergence.
$\Delta X:=$ ATWA $^{-1} \cdot \mathrm{ATW} \Delta \mathrm{Y}$

$$
\Delta \mathrm{X}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
-0 \\
-0 \\
-0
\end{array}\right)
$$

$X:=\operatorname{stack}\left(\mathbf{r}_{\mathbf{0}}, \mathbf{v}_{\mathbf{0}}\right)+\Delta \mathrm{X}$
WSS : $=\sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{W}_{\mathrm{i}, \mathrm{i}} . \Delta \mathrm{Y}_{\mathrm{i}}\right)^{2}$
Weighted sum of squares of residuals.
$\mathrm{WSS}=0$

WRMS $:=\operatorname{SecPerRad} \cdot \sqrt{\frac{\text { WSS }}{\mathrm{N}}}$
Weighted RMS in arcsec

WRMS $=2.15526$

PWSS := $\sum_{i=1}^{6}\left(A T W \Delta Y_{i} \cdot \Delta X_{i}\right)$
Predicted weighted sum of squares of residuals for next iteration.

WSS $=0$

PWRMS $:=$ SecPerRad $\cdot \sqrt{\frac{\mid W S S ~-~ P W S S ~}{N}}$
Predicted weighted RMS for nex iteration, in arc-sec.

PWRMS $=2.15526$

Converged := $\mid 1$ if |WRMS - PWRMS $\mid<0.01$-WRMS 0 otherwise

Converged $=1$

APPENDPRN("RMS.prn") := (WRMS Converged)

RMS := READPRN("RMS.prn")

RMS History:

$$
\mathbf{R M S}=\left(\begin{array}{cc}
0 & 0 \\
3.13 & 0 \\
2.155 & 1 \\
2.155 & 1
\end{array}\right)
$$

Number of iterations:

```
Iterations:= rows(RMS) - 
```

Iterations $=3$
6. Write the corrected state vector to disk and convert to conic elements.

$$
\text { WRITEPRN("STATE.prn" }):=\text { stack }\left[\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right),\left(\begin{array}{l}
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right) \cdot \mathrm{K}\right]
$$

WRITEPRN("DELTA.prn") :=
(Also save geocentric distances for use in light-time corrections.)

First transform \mathbf{r}_{1} and \mathbf{v}_{1} from the HCl (HelioCentric Inertial) equatorial reference frame of date to the HCl ecliptic reference frame of date.

We will need the obliquity of the ecliptic, ε, at date of first observation, in order to transform the ECI ecliptic coordinates of date to ECl equatorial coordinates of date.
$\mathcal{z}_{\mathrm{m}}:=\frac{23.4392911-0.0000004 \cdot\left(\mathbf{J D T}_{1}-2451545.0\right)}{\text { DegPerRad }}$

$$
\mathbf{M O}:=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\varepsilon) & -\sin (\varepsilon) \\
0 & \sin (\varepsilon) & \cos (\varepsilon)
\end{array}\right)
$$

$\operatorname{ECEQ}(\mathbf{r}):=\mathrm{MO} \cdot \mathbf{r}$ (Transforms from ecliptic to equatorial.)
$\operatorname{EQEC}(\mathbf{r}):=\mathbf{M O}^{-1} \cdot \mathbf{r} \quad$ (Transforms from equatorial to ecliptic.)

$$
\left.\left.\begin{array}{l}
\mathbf{r}_{\mathbf{1}}:=\mathbf{E Q E C}\left(\left(\begin{array}{l}
\mathrm{X}_{1} \\
\mathrm{x}_{2} \\
\mathrm{X}_{3}
\end{array}\right)\right) \\
\mathbf{v}_{\mathbf{1}}:=\mathbf{E Q E C}\left[\left(\begin{array}{c}
0.96711 \\
2.52033 \\
-0.10532
\end{array}\right)\right. \\
\mathrm{X}_{5} \\
\mathrm{X}_{6}
\end{array}\right) \cdot \mathrm{~K}\right] \quad \mathbf{v}_{\mathbf{1}}=\left(\begin{array}{c}
-0.00999 \\
0.00297 \\
0.00194
\end{array}\right), ~ 又
$$

Need heliocentric state vectors for precessio

 worksheet,Precess_Ceres_1801_Elements_to_J2000.xmcd

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
X_{3}
\end{array}\right)=\left(\begin{array}{l}
0.96710782 \\
2.35379252 \\
0.90709088
\end{array}\right) \quad\left(\begin{array}{l}
x_{4} \\
x_{5} \\
X_{6}
\end{array}\right) \cdot K=\left(\begin{array}{c}
-0.00998828 \\
0.00194961 \\
0.00295711
\end{array}\right)
$$

PVCO invokes function SCAL1, which we define now.

$$
\operatorname{SCAL}(\mathrm{K}, \alpha, \mathrm{q}, \mathrm{e}, v):=\left\{\begin{array}{l}
\text { if } \alpha>0 \\
\left\lvert\, \begin{array}{l}
\mathrm{E} \leftarrow v-2 \cdot \operatorname{atan}\left(\frac{\mathrm{e} \cdot \sin (v)}{1+\sqrt{1-\mathrm{e}^{2}}+\mathrm{e} \cdot \cos (v)}\right) \\
\mathrm{s} \leftarrow \frac{\mathrm{E}}{\sqrt{\alpha}} \\
\text { otherwise }
\end{array}\right. \\
\left\lvert\, \begin{array}{l}
\mathrm{w} \leftarrow \frac{1}{\mathrm{~K}} \cdot \sqrt{\frac{\mathrm{q}}{1+\mathrm{e}}} \cdot \tan \left(\frac{v}{2}\right) \\
\mathrm{s} \leftarrow 2 \cdot \mathrm{w} \text { if } \alpha=0 \\
\text { otherwise } \\
\mathrm{E} \leftarrow 2 \cdot \operatorname{atanh}(\sqrt{-\alpha} \cdot \mathrm{w}) \\
\mathrm{s} \leftarrow \frac{\mathrm{E}}{\sqrt{-\alpha}}
\end{array}\right.
\end{array}\right.
$$

Finally, now, we define function PVCO
(Note that in PVCO, as defined in this document, the subscripts of the \mathbf{P}, \mathbf{Q}, and \mathbf{W} vectors range from 1 through 3 rather than from 0 through 2. Also, the subscripts of \mathbf{c} range from 1 through 4 rather than from 0 through 3 .)

$$
\begin{aligned}
& \operatorname{PVCO}(\mathrm{K}, \mathbf{r}, \mathbf{v}):=\mid \mathrm{r} \leftarrow \sqrt{\mathbf{r} \cdot \mathbf{r}} \\
& \left\{\begin{array}{l}
\mathrm{r} \leftarrow \sqrt{\mathbf{r} \cdot \mathbf{r}} \\
\mathbf{h} \leftarrow \mathbf{r} \times \mathbf{v} \\
\mathrm{h} \leftarrow \sqrt{\mathbf{h} \cdot \mathbf{h}}
\end{array}\right. \\
& \begin{array}{l}
\mathrm{h} \leftarrow \sqrt{\mathrm{~h} \cdot \mathrm{~h}} \\
\mathrm{~W} \leftarrow \frac{\mathrm{~h}}{\mathrm{~h}}
\end{array} \\
& \mathrm{E} \leftarrow \frac{\mathbf{v} \cdot \mathbf{v}}{2}-\frac{\mathrm{K}^{2}}{\mathrm{r}} \\
& \begin{array}{l}
\mathrm{\alpha} \leftarrow-2 \cdot \mathrm{E} \\
\mathrm{p} \leftarrow \frac{\mathrm{~h}^{2}}{\mathrm{~K}^{2}}
\end{array} \\
& \begin{array}{l}
\mathrm{e} \leftarrow \sqrt{1.0-\alpha \cdot p \cdot \mathrm{~K}^{-2}} \\
\mathrm{q} \leftarrow \frac{\mathrm{p}}{1+\mathrm{e}}
\end{array} \\
& \mathbf{U} \leftarrow \frac{\mathbf{r}}{\mathrm{r}} \\
& \mathbf{V} \leftarrow \mathbf{W} \times \mathbf{U} \\
& v \leftarrow \operatorname{angle}\left(\frac{\mathrm{~h}}{\mathrm{~K}^{2}} \cdot \mathbf{v} \cdot \mathbf{V}-1.0, \frac{\mathrm{~h}}{\mathrm{~K}^{2}} \cdot \mathbf{v} \cdot \mathbf{U}\right) \\
& \mathbf{P} \leftarrow \cos (v) \cdot \mathbf{U}-\sin (v) \cdot \mathbf{V} \\
& \mathbf{Q} \leftarrow \sin (v) \cdot \mathbf{U}+\cos (v) \cdot \mathbf{V} \\
& \mathrm{i} \leftarrow \operatorname{acos}\left(\mathbf{W}_{3}\right) \\
& \Omega \leftarrow \operatorname{angle}\left(-\mathbf{W}_{2}, \mathbf{W}_{1}\right) \\
& \begin{array}{l}
\omega \leftarrow \operatorname{angle}\left(\mathbf{Q}_{3}, \mathbf{P}_{3}\right) \\
\mathrm{s} \leftarrow \operatorname{SCAL1}(\mathrm{~K}, \mathrm{\alpha}, \mathrm{q}, \mathrm{e}, v)
\end{array} \\
& \mathrm{c} \leftarrow \mathrm{C}\left(\alpha \cdot s^{2}\right) \\
& \Delta \mathrm{t} \leftarrow \mathrm{q} \cdot \mathrm{~s}+\mathrm{K}^{2} \cdot \mathrm{e} \cdot \mathrm{~s}^{3} \cdot \mathrm{c}_{4} \\
& \text { q } \\
& \text { i-DegPerRad } \\
& \Omega \text {-DegPerRad } \\
& \omega \text {-DegPerRad }
\end{aligned}
$$

We now invoke PVCO and place its output into array CONIC.
CONIC := $\mathbf{P V C O}\left(\mathrm{K}, \mathbf{r}_{\mathbf{1}}, \mathbf{v}_{\mathbf{1}}\right)$
CONIC $=\left(\begin{array}{c}2.53024 \\ 0.08717 \\ 10.61659 \\ 81.02084 \\ 65.71636 \\ 1365.7595\end{array}\right)$

We should note that the position vector input to PVCO must have units of A.U. and the velocity vector must have units of A. U. per day. We summarize our batch least squares DC's orbital vector must have un

CONIC ${ }_{1}=2.53024365$	Perihelion distance in A.U.
CONIC $2=0.08716516$	Path eccentricity.
$\mathrm{CONIC}_{3}=10.61658703$	Path inclination, in degrees.
CONIC $_{4}=81.0208356$	Celestial longitude of ascending node, in degrees.
$\mathrm{CONIC}_{5}=65.71636094$	Argument of perihelion, in degrees.
$\mathrm{CONIC}_{6}=1365.75950359$	Time of flight from perihelion to epoch, in dass
$\mathrm{a}:=\frac{\text { CONIC }_{1}}{1-\text { CONIC }_{2}}$	$a=2.77185262 \quad$ A.U.
- $\frac{-3}{2}$	
$\mathrm{n}_{\mathrm{c}}:=\mathrm{K} \cdot \mathrm{a}^{2}{ }^{2} \cdot$ DegPerRad	$\mathrm{n}_{\mathrm{c}}=0.21357424$ deg/day
$\mathrm{M}:=\bmod \left(\mathrm{n}_{\mathrm{c}} \cdot \mathbf{C O N I C}_{6}, 360\right)$	$M=291.6910488 \quad$ degrees
$\mathrm{P}:=\frac{2 \cdot \pi \cdot \text { DegPerRad }}{}$	$\mathrm{P}=1685.59653539$ days

Here now is a summary of our batch least squares, two-body DC solution, using 17 actual Piazzi observations over the time span 1801 January 1 - February 11, along with the HGM-Heliocentric ((HH1/HHC) solution using these same 17 observations.

Orbital Element/Parameter
Semimajor axis, A.U.
Eccentricity
Inclination*, deg
Longitude of Asc. Node*, deg
Argument of perihelion*, deg
Mean anomaly, deg*
Mean motion, deg/day Orbital period, days
Orbital period, Julian years

HGM-Heliocentric Value	Batch DC Value
2.75472901	2.77185262
0.08078932	0.08716516
10.6099206	10.61659
81.0379081	81.02084
67.63590985	65.71636
290.7618546	291.6910488
0.215568723	0.21357424
1670.00107878	1685.59653539
4.57221377	4.6149118

*Angles are referred to true ecliptic and equinox of 1801 January 1.

Note 1: Contemporary
perioed upon mean daily motion of 0.2140 deg/day
is:

Note 2: Batch DC
solution includes
light-time correction
that is not present in
the HGM-Heliocentric
solution.
(Light-time
displacement may
have been disabled ${ }^{* *}$
in FXA in order to
make direct
comparison with
elements.)

REFERENCES

[1] Mansfield, Roger L., "Algorithms for Reducing Radar Observations of a Hyperbolic Near Earth Flyby," Journal of the Astronautical Sciences (April-June 1993), pp. 249-259
[2] Mansfield, Roger L., "Tracking Data Reduction for the Geotail, Mars Observer, and Galile Missions," Eleventh Space Surveillance Workshop, MIT Lincoln Laboratory (March 31, 1993).
[Relevant material was distributed in a 19-page presentation handout, separately from the published conference proceedings, and was distributed only to attendees of the author's actual presentation. The published conference proceedings contain a six-page extended abstract of the presentation only (no equations).]
[3] Danby, J.M.A., Fundamentals of Celestial Mechanics, Willmann-Bell (2nd Ed. 1988), Appendix I.
[4] Goodyear, William H., "Completely General Closed-Form Solution for the Coordinates and Partial Derivatives of the Two-Body Problem," Astronomical Journal, Vol. 70, No. 3 (1965), pp. 189-192.
[5] Goodyear, William H., "A General Method for the Computation of Cartesian Coordinates and Partial Derivatives of the Two-Body Problem," NASA Report CR-522 (1966).
[This report, 97 pages in length, was prepared under Contract No. NAS 5 - 9762 by IBM for NASA's Goddard Space Flight Center, Greenbelt, Maryland.]
[6] Shepperd, Stanley W., "Universal Keplerian State Transition Matrix," Celestial Mechanics, Vol 35, No. 2 (February 1985), pp. 129-144

Battin, Richard C., An Introduction to the Mathematics and Methods of Astrodynamics, AIAA Education Series (1987), Section 9.5.
[8] Der, Gim J., "An Elegant State Transition Matrix," Journal of the Astronautical Sciences (October - December 1997), pp. 371-390.
[9] Mansfield, Roger L., Topics in Astrodynamics, Astronomical Data Service, Colorado Springs, Colorado, February 28, 2003. Chapter 14 presents the Uniform Path Mechanics (UPM) equations of universal-variables, two-body orbital motion. Chapter 15 presents the author's treatment of batch least squares UPM differential correction ("Batch UPM DC") for Earth-orbital motion.

Define function needed to plot ecliptic path of Sun in 1801

Ecliptic2D $:=\left\lvert\, \mathrm{Obl} \leftarrow \frac{23.46836}{\text { DegPerRad }}\right.$ $M \leftarrow\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos (\mathrm{Obl}) & -\sin (\mathrm{Obl}) \\ 0 & & (\mathrm{Ob})\end{array}\right)$ $\left(\begin{array}{lll}0 & \sin (\mathrm{Obl}) & \cos (\mathrm{Obl})\end{array}\right.$
for $i \in 1$.. 36

$$
\left\{\begin{array}{l}
\alpha_{\mathrm{i}} \leftarrow \frac{(\mathrm{i}-1)}{\operatorname{DegPerRad}} \\
\delta_{\mathrm{i}} \leftarrow 0 \\
\mathrm{~V}_{1} \leftarrow \cos \left(\delta_{\mathrm{i}}\right) \cdot \cos \left(\alpha_{\mathrm{i}}\right) \\
\mathrm{V}_{2} \leftarrow \cos \left(\delta_{\mathrm{i}}\right) \cdot \sin \left(\alpha_{\mathrm{i}}\right) \\
\mathrm{V}_{3} \leftarrow \sin \left(\delta_{\mathrm{i}}\right) \\
\mathrm{V} \leftarrow \mathrm{M} \cdot \mathrm{~V} \\
\mathrm{X}_{\mathrm{i}} \leftarrow \mathrm{~V}_{1} \\
\mathrm{Y}_{\mathrm{i}} \leftarrow \mathrm{~V}_{2} \\
\mathrm{Z}_{\mathrm{i}} \leftarrow \mathrm{~V}_{3} \\
\alpha_{\mathrm{i}} \leftarrow \alpha_{\mathrm{i}} \cdot \operatorname{DegPerRad} \\
\delta_{\mathrm{i}} \leftarrow \operatorname{asin}\left(\mathrm{Z}_{\mathrm{i}}\right) \cdot \operatorname{DegPerRad}
\end{array}\right.
$$

augment (α, δ)

EclipticPath := Ecliptic2D

Plot of 1801 Discovery Orbit of Ceres from 17-Best-Piazzi-Observations HDC Solution, ORBIT2 Numerically-Integrated

 Solution, and Gauss Predictions from Monatliche Correspondenz, Vol. 4 (December 1801, p. 647)
lot is declination (vertical axis, degrees) vs. right ascension (horizontal axis, hours). Right ascensions are plotted "backward" above because right ascensions increase from right to left on a star chart. So just disregard the minus signs on the right ascension labels. Red plusses = Hd1_Hdc ephemeris with 17 Piazzi observations. Blue plusses $=$ ORBIT2 ephemeris.Green plusses $=$ Gauss ephemeris as published in Monatliche Correspondenz, Vol. 4, Article LVII, p. 647.

