
BATCH LEAST SQUARES DIFFERENTIAL CORRECTION
                    OF A HELIOCENTRIC ORBIT

      PART 2 - MANUAL CORRECTION WORKSHEET

              Roger L. Mansfield, June 21, 2016
                          http://astroger.com

TIPS ON READING MATHCAD WORKSHEETS

1. A Mathcad worksheet typically consists of text regions and 
math regions.

2. Text and math regions can be anywhere on a page. Text regions
are just optional comments. Mathcad uses math regions to do its
calculations, and according to the following rule: math regions 
are calculated in the order of left to right, then top to bottom.

3. In a math region, colon-equals ( := ) is like an assignment 
statement in C. That is, the expression on the right is calculated 
and placed in the variable on the left, whereas equals ( = ) by 
itself is used to display on the right of the equals sign the 
value of the variable on the left.

4. Mathcad has functions just like C does. Typically a function has
its name and input variables inside of parentheses on the left of a
colon-equals ( := ) and a sequence of vertical line segments with 
the assignment statements of the function on the right. Inside of a 
function, the assignment statements use left arrows <-- instead of
colon-equals := to make assignments. The last line of a function is
its output argument, which may be a a scalar, a vector, or a
matrix of variables.

5. My Mathcad worksheets generally are formatted so that the flow
is left to right, top to bottom of an 8.5" x 11" page when the 
workshet is printed.

 - But I like to use a second 8.5" page side-by-side for additional 
material, added later, that I might later delete, e.g., scratchpad 
or temporary calculations.

 - Sometimes I use this extra right-margin space to do, in parallel, 
calculations needed later on, or to simply add material without 
disturbing the main flow.

 - When my worksheet has the second, side-by-side page and I want
to publish the worksheet, I print the worksheet as an Adobe .pdf 
file. I specify the "ledger" format, which, thankfully, prints out 
both pages side-by-side.

These tips themselves fit my second, side-by-side page convention: 
they are additionaly material that is not part of the main flow of 
the worksheet.

In this worksheet we differentially correct (DC) the orbit of a comet, minor planet, or interplanetary
space probe using a test case specified in worksheet HD1, or in a worksheet derived from HD1. You
should open worksheet HD1, or your own worksheet derived from HD1, and click on "Calculate
Worksheet" from the Math menu now, if you have not already done so.

The process that we will use in this worksheet is documented in Refs. [1], [2], and [9] for the
differential correction of Earth orbits. We will use only optical (astrometric) observations in this
worksheet. The batch equation of differential correction (BEDC) is:

Xo'  = Xo + (ATWA)-1 ATW [ Y - F(Xo) ].

Here Xo is the initial estimate of the state vector, i.e., position and velocity, at epoch to. Xo' is the

"improved" estimate of Xo at to, obtained by adding to Xo the correction (ATWA)-1 ATW [ Y - F(Xo) ].

If we let n be the number of observations, then Y is a 2n-by-1 column vector of measurements, since
for our problem in heliocentric motion the measurements are topocentric right ascension (RA, or )
and topocentric declination (DEC, or ). If we denote the total number of measurements by N, then N
= 2n.

F(Xo) is thus an N-by-1column vector of "computed" measurements. What this means is that the RA

and DEC for each observation are computed via our UPM model of two-body motion, by propagating
the current estimate, Xo, to the observation times ti for i = 1, ... , n, and by then computing the

topocentric RA and DEC at each observation time, given the specified location of the observer. We
say "current estimate, Xo" because we will find it necessary to iterate on the BEDC, testing for

convergence at each iteration by means of a criterion we will define below. If we have convergence
on a given iteration, then we stop and convert the solution to conic elements. But if we do not have
convergence, then we replace Xo by Xo' and solve the BEDC again, i.e., iterate. (We could also

implement an iteration counter and stop the DC if some maximum allowable number of iterations is
reached without convergence, but that is not needed here because we iterate the BEDC manually
by clicking on "Calculate Worksheet".)

[ Y - F(Xo) ] is the N-by-1column vector of residuals, in the sense "observed minus computed". The

BEDC is a form of the least squares normal equations, N equations in six unknowns, which result
when one answers the question, "what is a necessary condition that the weighted sum of squares of
the residuals be a minimum?" The residuals are not actually  and , but rather cos   and ;
they are the projections of L on A and D in turn. (The cos  factor can become quite important
when the object passes near a celestial pole, where large changes in  accompany relatively small
changes in arc length in the direction of motion.)
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A, the "A-matrix", is the N-by-6 array of partial derivatives of the N measurements with respect to
the six components of the state vector Xo. We will compute the A-matrix from the O-matrix and the

G-matrix, i.e., A = OG. O is the N-by-6 matrix of partials of the measurements with respect to the
state vector at observation times ti,  for i = 1, ... ,  n. G is Goodyear's 6-by-6 state transition matrix,

i.e., the 6-by-6 matrix of partials of the state components at times ti with respect to the state

components at to. G is therefore a 6-by-6 Jacobian matrix defined at each observation time ti, for i =

1, ... , n.
W is the weight matrix. Under the assumption that the measurements are Gaussian random
variables, and are not correlated (Danby [3] has a good discussion of this), W is a diagonal matrix

and each diagonal entry is 1/i
2, where i

2 is the variance of measurment i. (We implement W here

only for completeness; we will take W as the N-by-N identity matrix in this worksheet.)

Here now is an outline of the steps we will follow:

1.  Retrieve the test case values from disk, as specified by worksheet HD1, or as specified by
your own worksheet that was derived from HD1 by duplication and modification.

Retrieval includes obtaining the initial or current estimate of state, X, and the RMS history
matrix. Each time you click on "Calculate Worksheet", HDC performs another iteration of
weighted, batch least squares differential correction. At each iteration the corrected values of X
are written to disk along with the RMS for that iteration. The corrected values of X thus become
the current state estimate for the next iteration, and the RMS history is accumulated so that
you can keep track of how the DC is going.

2.  Define the procedural functions needed in the DC: C, FG, GMAT, and FXA.

3.  Obtain the computed measurements, FX, and the A-matrix, A, by invoking FXA.

4.  Compute the residuals, Y, the ATWA matrix ATWA, and the ATWY matrix, ATWY.

5.  Solve for and apply the corrections to state, X. Compute the current RMS, display the RMS
history, and test for convergence.

6.  Write the corrected state vector to disk and convert to conic elements.

7.  Repeat Steps 1-6, by clicking on "Calculate Worksheet", until convergence is obtained.

As a preliminary, we define some constants that we will need, and set the Mathcad worksheet
ORIGIN to 1 so that subscripts start at unity rather than at zero.

DegPerRad
180

π
 ORIGIN 1

SecPerDeg 3600.0 SecPerRad 206264.806

SecPerRev SecPerDeg 360.0
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1.  Retrieve the test case values from disk, as specified by worksheet HD1, or as specified by your
own worksheet that was derived from HD1 by duplication and modification.

The material added below works in parallel with the main worksheet
flow on the left to calculate and display a comparison plot of the 
ephemeris of Ceres at 30-day intervals starting at the JDT1 epoch.

What is compared is the ephemeris of Ceres obtained from the DC
solution with 17 actual Piazzi observations vs. the DC solution with
19 Der ORBIT2-computed observations. There are 13 ephemeris
comparison points that span 360 days past epoch. 

n READPRN "NOBS.dat"( )
1

 Number of observations.

JDT READPRN "TVALS.prn"( ) Observation times.

Epoch READPRN "EPOCH.dat"( )
1

 Epoch of state vector solution.

Read values and points needed for comparison plot, HDC with 17
actual Piazzi obs vs. HDC with 19 Der ORBIT2-computed  obs:

W READPRN "WEIGHTS.prn"( ) Measurement weights matrix.

R1 READPRN "RVALS1.prn"( )
R READPRN "RVALS.prn"( ) Values of R.

Y READPRN "YVALS.prn"( ) Values of Y. M2 READPRN "POINTS_DER.prn"( )

X READPRN "STATE.prn"( ) State vector (corrected by HDC).

RMS READPRN "RMS.prn"( ) RMS history for state corrections by HDC
(one entry for each iteration). Note on READPRN for M2:

POINTS_DER.prn has RA/DEC predictions from Hd1/Hdc solution with 17
Piazzi observations. The predictions are at epoch plus 12 additional points
spaced at equal 30-day intervals past epoch.

POINTS_DER_ORBIT2.prn has RA/DEC predictions using ORBIT2 solar
system numerical integration. Here, too, the predictions are at epoch plus 12
additional points spaced at equal 30-day intervals past epoch.

Δ READPRN "DELTA.prn"( )  values for light-time correction.

N 2 n Set number of measurements.

k 0.01720209895 Set Gaussian constant for heliocentric motion.

Input Gauss's search ephemeris as provided to von Zach. See Monatliche
Correspondenz, Vol. 4, p. 647 (1801 December).μ 1 Assume that mass of secondary (comet or

asteroid) is negligible relative to mass of
primary (Sun).

Gauss READPRN "GAUSS.prn"( )
K k μ

2.  Define the procedural functions needed in the DC: C, FG, GMAT, and FXA.

For path propagation one needs to calculate only c0 through c3, but for the state transition matrix, G,

one needs c0 through c5.  To keep down the length of this worksheet we define one version of C, the

one that calculates c0 through c5.  (Remember that since the ORIGIN = 1, the subscripts of the

c-functions that we will use outside of the function C will range from 1 through 6, rather than from 0
through 5.)

Gauss

11.65585

11.7885

11.91407

12.03162

12.14167

12.24181

12.3331

12.50322

12.06647

11.68969

11.38053

11.155

11.01156

10.94381






















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C x( ) N 0

x
x

4


N N 1

x 0.1while

c5

1
x

42
1

x

72
1

x

110
1

x

156
1

x

210
1

x

272




































120


c4

1
x

30
1

x

56
1

x

090
1

x

132
1

x

182
1

x

240




































24


c3
1

6
c5 x

c2
1

2
c4 x

c1 1 c3 x

c0 1 c2 x

N N 1

c5
c2 c3 c4 c5 

16


c4
c2 c2 c4 c4 

8


c3
c1 c2 c3 

4


c2
c1 c1

2


c1 c1 c0

c0 2 c0 c0 1

N 0while

c0 c1 c2 c3 c4 c5 T



Function UKEP solves the uniform Kepler equation for function FG.  FG, in turn, propagates position
and velocity for function FXA.   
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UKEP τ ro σo α  s
τ

ro


Δs s

c C α s
2

 

F ro s c2 σo s
2

 c
3

 s
3
c
4

 τ

DF ro c1 σo s c2 s
2
c
3



DDF σo c1 1 ro α  s c2

m 1 DF 0if

m 1 otherwise

Δs
5 F

DF m 4 DF( )
2

20 F DDF 


s s Δs

Δs 0.00000001while

s



FG K ro vo Δt  τ K Δt

ro ro ro

σo ro vo

α
2

ro
vo vo

s UKEP τ ro σo α 

c C α s
2

 

fr 1 s
2
c
3

 ro
1



gr τ s
3
c
4



r ro c1 σo s c2 s
2
c
3



fv s c
2

 r ro  1


gv 1 s
2
c
3

 r
1



K

τ

α

s

ro

r

fr

gr

fv

gv










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Function GMAT provides the state transition matrix for function FXA.

The state transition matrix formulation that we use below is based upon the seminal works of
Goodyear [4], [5]. See also Shepperd [6], Battin [7], and Der [8] for more recent expositions.

Before defining GMAT, we define functions S11, S12, S21, and S22 just to make GMAT fit horizontally

and vertically within the margins of a single Mathcad page.

S11 ro r fr gr fv gv s 

fv s2
fr 1

ro


ro


fr 1  s2
ro

fv s
3



fr 1  s3



















S12 ro r fr gr fv gv s 
fv s
3



fr 1  s3
gv 1  s

3


gr s3











S21 ro r fr gr fv gv s 

fv
s
1

ro r

1

r
2


1

ro
2














fv s2
fr 1 
ro



ro

fv s2
gv 1

r


r


fv s3























S22 ro r fr gr fv gv s 
fv s2

gv 1

r


r


fv s3

gv 1  s
2



r

gv 1  s3

















(Note that because ORIGIN = 1, the subscripts of the c-functions and Goodyear's s-functions range
from 1 to 6 rather than from 0 to 5. It is especially important to note this difference when checking the
GMAT formulas against Goodyear's original works.) 
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GMAT M ro vo r v  τ M
2 1

α M
1 2

s M
2 2

ro M
1 3

r M
2 3

fr M
1 4

gr M
2 4

fv M
1 5

gv M
2 5

c C α s
2

 

s c
1
s c
2

 s
2
c
3

 s
3
c
4

 s
4
c
5

 s
5
c
6






T



U s
3

τ s s
5

 3 s
6



A augment r v( )

B augment ro vo T

ao
ro

ro
3



a
r

r
3



I identity 3( )

G11 fr I U v ao
T A S11 ro r fr gr fv gv s  B

G12 gr I U v vo
T A S12 ro r fr gr fv gv s  B

G21 fv I U a ao
T A S21 ro r fr gr fv gv s  B

G22 gv I U a vo
T A S22 ro r fr gr fv gv s  B

stack augment G11 G12  augment G21 G22  



Below is an example of a "trick" in Mathcad. Since calculation flow is from
left to right, top to bottom, by making a copy of FXA and pasting it to the
right of the original, I can modify the copy and Mathcad will use the 
modified copy instead of the original.

Function FXA calculates FX, the N-by-1computed measurements vector, and A, the N-by-6 A-matrix
of partials of the measurements at time ti with respect to the state at time to.

Temporarily disable light-time displacement in FXA in order to compare
solution with that of HGM using ORBIT2-derived TOD observations.
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FXA K ro vo 
M FG K ro vo JDT

i
Epoch 0.005768 Δ

2 i 1 

τ M
2 1

α M
1 2

s M
2 2

ro M
1 3

r M
2 3

fr M
1 4

gr M
2 4

fv M
1 5

gv M
2 5

r fr ro gr vo

v fv ro gv vo

ρ r R i
 



ρ ρ ρ

j 2 i 1

k j 1

RA angle ρ
1

ρ
2

 

DEC asin ρ
3

ρ
1







FX
j

cos Y
k  RA

FX
k

DEC

Δ
j

ρ

Δ
k

0

O
1

ρ

sin RA( )

sin DEC( ) cos RA( )

cos RA( )

sin DEC( ) sin RA( )

0

cos DEC( )

0

0

0

0

0

0











G GMAT M ro vo r v 

A O G i 1=if

A stack A O G( ) otherwise

i 1 nfor

A augment FX A( )

augment Δ A( )

 FXA K ro vo 
M FG K ro vo JDT

i
Epoch 

τ M
2 1

α M
1 2

s M
2 2

ro M
1 3

r M
2 3

fr M
1 4

gr M
2 4

fv M
1 5

gv M
2 5

r fr ro gr vo

v fv ro gv vo

ρ r R i
 



ρ ρ ρ

j 2 i 1

k j 1

RA angle ρ
1

ρ
2

 

DEC asin ρ
3

ρ
1







FX
j

cos Y
k  RA

FX
k

DEC

Δ
j

ρ

Δ
k

0

O
1

ρ

sin RA( )

sin DEC( ) cos RA( )

cos RA( )

sin DEC( ) sin RA( )

0

cos DEC( )

0

0

0

0

0

0











G GMAT M ro vo r v 

A O G i 1=if

A stack A O G( ) otherwise

i 1 nfor

A augment FX A( )

augment Δ A( )


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3.  Obtain the computed measurements, FX, and the A-matrix, A, by invoking FXA. Define function to calculate geocentric positions of Ceres at 30-day
intervals starting at epoch. Need to input R1 array of heliocentric Earth
positions, computed in HD1, in order for this to work. Also need M2 array
from the HD1/HDC worksheet pair, with 19 Der ORBIT2-computed 
positions as needed for the comparison plot. 

ro

X
1

X
2

X
3











 vo

X
4

X
5

X
6











1

K


Points K ro vo 
t
j

JDT
1

Epoch 30 j 1( )

M FG K ro vo t
j

 

τ M
2 1

α M
1 2

s M
2 2

ro M
1 3

r M
2 3

fr M
1 4

gr M
2 4

fv M
1 5

gv M
2 5

r fr ro gr vo

v fv ro gv vo

ρ r R1 j
 



ρ ρ ρ

RA angle ρ
1

ρ
2

  DegPerRad

DEC asin ρ
3

ρ
1





 DegPerRad

A t
j
t
j
JDT

1


RA

15
DEC





 j 1=if

A stack A t
j
t
j
JDT

1


RA

15
DEC











 otherwise

j 1 13for

A



M FXA K ro vo 

FX M 2  A submatrix M 1 N 3 8( )

Extract the geocentric distance values as
needed for the light-time correction.

Δ M 1 

FX

1

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0.87061649
0.27277156

0.86913415

0.27374488

0.86651011

0.27575906

0.86130628

0.28232962

0.86005835

0.28713294

0.86095872

0.29358074

0.86206144

0.29628839

0.86277151

...

 (To see all entries of FX or A, click
on the column vector or  matrix,
respectively, and scroll up/down
or right/left.)

A

1 2

1
2

3

4

5

6

7

-0.40491515 0.31866265
-0.08584821 -0.10908477

-0.40257292 0.31766557

-0.08587629 -0.10883056

-0.3979437 0.31547555

-0.0858876 -0.1083467

-0.38459127 ...



M1 Points K ro vo 
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4.  Compute the residuals, Y, the ATWA matrix ATWA, and the ATWY matrix, ATWY. M1 points represent HDC solution for 17 actual Piazzi obs. M2 points represent HDC
solution for 19 Der ORBIT2-computed Piazzi obs:

ΔY Y FX ATWA AT W A

ATWΔY AT W ΔY

M1

0

30

60

90

120

150

180

210

240

270

300

330

360

2378862.3634

2378892.3634

2378922.3634

2378952.3634

2378982.3634

2379012.3634

2379042.3634

2379072.3634

2379102.3634

2379132.3634

2379162.3634

2379192.3634

2379222.3634

3.453183

3.505395

3.914105

4.571208

5.392999

6.318119

7.295335

8.280609

9.239695

10.148411

10.986372

11.724098

12.304506

15.628659

17.813179

20.634205

23.38934

25.475214

26.466655

26.147587

24.529099

21.839429

18.489777

15.041401

12.190926

10.752828







































 M2

0

30

60

90

120

150

180

210

240

270

300

330

360

2378862.3634

2378892.3634

2378922.3634

2378952.3634

2378982.3634

2379012.3634

2379042.3634

2379072.3634

2379102.3634

2379132.3634

2379162.3634

2379192.3634

2379222.3634

3.39371

3.45324

3.86198

4.5134

5.32587

6.23988

7.20579

8.18052

9.12977

10.02824

10.85363

11.57367

12.1273

15.24174

17.43789

20.27967

23.06853

25.21261

26.29566

26.10347

24.64158

22.12891

18.96953

15.72572

13.10856

11.96112

3.39371

3.45324

3.86199

4.51346

5.32605

6.24026

7.20645

8.18154

9.13118

10.03011

10.85606

11.57685

12.13152

15.2413

17.43758

20.27941

23.06808

25.21175

26.29404

26.10046

24.63619

22.11999

18.95587

15.70595

13.08091

11.92318









































(To see all entries of Y, click
on the column vector and
scroll up/down or right/left.)ΔY

1

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

-0.00001434
0.00000159

0.00001083

0.00000759

-0.0000027

-0.00000868

0.00000676

-0.00001292

0.00001459

0.00000136

-0.00000565

0.00000352

-0.00000121

0.00000986

-0.0000196

...



Sky plot of right ascension, in hours, vs. declination, in degrees, for
HD1/HDC solution with 17 Piazzi observations (red plusses) vs. HD1/HDC 
solution with 19 Der ORBIT2-computed Piazzi observations (blue plusses):

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
90

75

60

45

30

15

0

15

30

45

60

75

90

M1
4 

M2
4 

Gauss
2 

M1
3  M2

3  Gauss
1 

ATWA

2.351508

1.5972887

0.6199579

0.8197251

0.5420871

0.2174363

1.5972887

1.5580222

0.7910734

0.5460656

0.5332222

0.2825486

0.6199579

0.7910734

3.2855841

0.2189415

0.2823915

1.1231481

0.8197251

0.5460656

0.2189415

0.4007607

0.2619893

0.1061408

0.5420871

0.5332222

0.2823915

0.2619893

0.2561328

0.1392604

0.2174363

0.2825486

1.1231481

0.1061408

0.1392604

0.5430261



















 (See also the plot at the 
end of this worksheet.)

ATWΔY

0

1.0733 10
15



0

0

0

0























Note: Since right ascension increases from 0 to 24 hours west to east in
the sky, and right to left on a sky chart, M1 and M2 were made negative
and the horizontal axes go from 0 to -15 hours so that the path of Ceres is
correct when superimposed on a star chart.
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Right ascension differences, 
in degrees:

Declination differences, 
in degrees:Plot the ∆α cos δ (red trace in the plot) and ∆δ residuals

(blue trace in the plot) for n = 17 observations. The units
are arc-seconds for both traces.

j 1 n

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
20

16

12

8

4

0

4

8

12

16

20

ΔY2 j 1 SecPerRad

ΔY2 j SecPerRad

j

M1 3
 

M2 3
 

  15

0.89210113

0.78232816

0.78188813

0.86713482

1.00692924

1.17363085

1.34322703

1.50127529

1.64885196

1.80252724

1.99116541

2.25635735

2.65806368







































 M1 3
 

M2 3
 



0.05947341

0.05215521

0.05212588

0.05780899

0.06712862

0.07824206

0.08954847

0.10008502

0.10992346

0.12016848

0.13274436

0.15042382

0.17720425









































Conclusion from these right-side-of-the-worksheet side calculations:

The orbital solution in the worksheet
 
Hdc_Ceres_1801_Piazzi_17_obs_Theta=RA_plot.xmcd

differs from the orbital solution in the worksheet

Hdc_Ceres_1801_Der_19_obs_Theta=RA.xmcd

by about 2.66 degrees of right ascension after 360 days.

It is important to note that, as can be seen from the comparison plot
above, both solutions follow the same "corridor" in the sky. They differ
mainly in predicting precisely where Ceres was along its path in this
corridor.

Note: this plot, and indeed all of the calculations in the worksheet, are
redone for every iteration of the DC, i.e., at every Ctrl-F9 or Tools Menu >
Calculate > Calculate Worksheet click. 
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5.  Solve for and apply the corrections to state, X.  Compute the current RMS error, display the
RMS error history, and test for convergence.

In the Addendum to my AMOS 2016 paper with Gim J. Der,
"Reconstruction of the 1801 Discovery Orbit of Ceres via
Contemporary Angles-Only Algorithms," we show that
Gauss's IOD solution with the three Piazzi observations
dated 1801 January 1, January 21, and February 11 is
somewhat better than the HDC solution in this HDC
worksheet that uses the 17 best Piazzi observations.

But it is further shown in the Addendum that when HDC is run
with the exact same three, and only three observations that
Gauss used, then our HDC solution now in 2016 is slightly
better than that of Gauss in 1801.

"Slightly better" is attributed to the fact that we have a better
solar ephemeris model in 2016 than Gauss had available to
him in 1801.
 

ΔX ATWA
1
ATWΔY ΔX

0

0

0

0

0

0





















X stack ro vo  ΔX

WSS

1

N

i

W
i i ΔY

i
 2



 Weighted sum of squares of
residuals.

WSS 0

WRMS SecPerRad
WSS

N
 Weighted RMS in arcsec.

WRMS 2.15526

PWSS

1

6

i

ATWΔY
i

ΔX
i

 


 Predicted weighted sum of squares
of residuals for next iteration.

PWSS 0

PWRMS SecPerRad
WSS PWSS

N
 Predicted weighted RMS for next

iteration, in arc-sec.

PWRMS 2.15526

Converged 1 WRMS PWRMS 0.01 WRMSif

0 otherwise



Converged 1
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APPENDPRN "RMS.prn"( ) WRMS Converged( )

RMS READPRN "RMS.prn"( )

RMS History: RMS

0

3.13

2.155

2.155

0

0

1

1













Number of iterations:

Iterations rows RMS( ) 1

Iterations 3

6.  Write the corrected state vector to disk and convert to conic elements.

WRITEPRN "STATE.prn"( ) stack

X
1

X
2

X
3











X
4

X
5

X
6











K













WRITEPRN "DELTA.prn"( ) Δ (Also save geocentric distances for use
in light-time corrections.)

First transform  r1 and v1 from the HCI (HelioCentric Inertial) equatorial reference frame of date to the

HCI ecliptic reference frame of date.

We will need the obliquity of the ecliptic, ε, at date of first observation, in order to transform the ECI
ecliptic coordinates of date to ECI equatorial coordinates of date.

ε

23.4392911 0.0000004 JDT
1

2451545.0 

DegPerRad
 MO

1

0

0

0

cos ε( )

sin ε( )

0

sin ε( )

cos ε( )













ECEQ r( ) MO r (Transforms from ecliptic to equatorial.)

EQEC r( ) MO
1
r (Transforms from equatorial to ecliptic.)
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Need heliocentric state vectors for precession
worksheet,

Precess_Ceres_1801_Elements_to_J2000.xmcd

r1 EQEC

X
1

X
2

X
3





















 r1

0.96711

2.52033

0.10532













X
1

X
2

X
3











0.96710782

2.35379252

0.90709088













X
4

X
5

X
6











K

0.00998828

0.00194961

0.00295711













v1 EQEC

X
4

X
5

X
6











K











 v1

0.00999

0.00297

0.00194













PVCO invokes function SCAL1, which we define now.

SCAL1 K α q e υ( )

E υ 2 atan
e sin υ( )

1 1 e
2

 e cos υ( )











s
E

α


α 0if

w
1

K

q

1 e
 tan

υ

2








s 2 w α 0=if

E 2 atanh α w 

s
E

α


otherwise

otherwise

s



Finally, now, we define function PVCO.

(Note that in PVCO, as defined in this document, the subscripts of the P, Q, and W vectors range
from 1 through 3 rather than from 0 through 2.  Also, the subscripts of c range from 1 through 4 rather
than from 0 through 3.)
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PVCO K r v( ) r r r

h r v

h h h

W
h

h


E
v v

2

K
2

r


α 2 E

p
h
2

K
2



e 1.0 α p K
2



q
p

1 e


U
r

r


V W U

υ angle
h

K
2
v V 1.0

h

K
2
v U










P cos υ( ) U sin υ( ) V

Q sin υ( ) U cos υ( ) V

i acos W
3 

Ω angle W
2

 W
1

 

ω angle Q
3
P
3

 

s SCAL1 K α q e υ( )

c C α s
2

 

Δt q s K
2
e s
3

 c
4



q

e

i DegPerRad

Ω DegPerRad

ω DegPerRad

Δt




















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We now invoke PVCO and place its output into array CONIC.

CONIC PVCO K r1 v1 

CONIC

2.53024

0.08717

10.61659

81.02084

65.71636

1365.7595





















We should note that the position vector input to PVCO must have units of A.U. and the velocity
vector must have units of A.U. per day.  We summarize our batch least squares DC's orbital
solution as follows.

CONIC
1

2.53024365 Perihelion distance in A.U.

CONIC
2

0.08716516 Path eccentricity.

CONIC
3

10.61658703 Path inclination, in degrees.

Celestial longitude of ascending node, in
degrees.CONIC

4
81.0208356

CONIC
5

65.71636094 Argument of perihelion, in degrees.

CONIC
6

1365.75950359 Time of flight from perihelion to epoch, in days.

a
CONIC

1

1 CONIC
2


 a 2.77185262 A.U.

nc K a

3

2
 DegPerRad nc 0.21357424 deg/day

M mod nc CONIC6 360  M 291.6910488 degrees

P
2 π DegPerRad

nc
 P 1685.59653539 days
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P

365.25
4.6149118 Period in Julian years.

Here now is a summary of our batch least squares, two-body DC solution, using 17 actual
Piazzi observations over the time span 1801 January 1 - February 11, along with the
HGM-Heliocentric ((HH1/HHC) solution using these same 17 observations.

 Orbital Element/Parameter

Semimajor axis, A.U.
Eccentricity
Inclination*, deg
Longitude of Asc. Node*, deg
Argument of perihelion*, deg
Mean anomaly, deg*

Mean motion, deg/day
Orbital period, days
Orbital period, Julian years

 HGM-Heliocentric Value

2.75472901
0.08078932
10.6099206
81.0379081
67.63590985
290.7618546

0.215568723
1670.00107878
4.57221377

 Batch DC Value

2.77185262
0.08716516
10.61659
81.02084
65.71636
291.6910488

0.21357424
1685.59653539
4.6149118

*Angles are referred to true ecliptic and equinox of 1801 January 1.

Note 1: Contemporary
period of Ceres in 2016,
based upon mean daily
motion of 0.2140 deg/day
is:

P
2 π DegPerRad

0.2140
 P 1682.24299

P

365.25
4.60573

Note 2: Batch DC
solution includes
light-time correction
that is not present in
the HGM-Heliocentric
solution.

(Light-time
displacement may
have been disabled**
in FXA in order to
make direct
comparison with
ORBIT2-generated
elements.)

**Light-time displacement was indeed
disabled in this worksheet, by
redefining FXA with the displacement
term omitted. The modified FXA was
placed to the right of the original FXA.
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7.  Repeat Steps 1-6, by clicking on "Calculate Worksheet", until convergence is obtained. Define function needed to plot ecliptic path of Sun
in 1801.
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
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Plot of 1801 Discovery Orbit of Ceres from 17-Best-Piazzi-Observations HDC Solution, ORBIT2 Numerically-Integrated
Solution, and Gauss Predictions from Monatliche Correspondenz, Vol. 4 (December 1801, p. 647)
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Plot is declination (vertical axis, degrees) vs. right ascension (horizontal axis, hours). Right ascensions are plotted "backward" above because right ascensions increase
from right to left on a star chart. So just disregard the minus signs on the right ascension labels. Red plusses = Hd1_Hdc ephemeris with 17 Piazzi observations. Blue
plusses = ORBIT2 ephemeris.Green plusses = Gauss ephemeris as published in Monatliche Correspondenz, Vol. 4, Article LVII, p. 647.
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